

Committee

Oral Session

- July 26, 2010 (Monday)
- July 27, 2010 (Tuesday)
- July 28, 2010 (Wednesday)
- July 29, 2010 (Thursday)
- July 30, 2010 (Friday)

Poster Sessions

- July 27, 2010 (Tuesday)
- July 29, 2010 (Thursday)

Author Index

30th International Conference on the Physics of Semiconductors

ICPS2010 July 25-30, 2010, Seoul, Korea

This proceedings was supported by the National Research Foundation of Korea Grant funded by the Korea Government (MEST, Basic Research Promotion Fund)

Ambipolar transport and photoresponsive characteristics in soluble organic thin film transistors using 4(HP3T)-benzene and PCBM composites

Man Jong Je¹, Mi Yeon Cho¹, Kyung Hwan Kim², Dong Hoon Choi², and Jinsoo Joo^{1*}

¹Department of Physics and Hybrid Nanostructure Research Lab, Korea University, Seoul 136-713, Korea ²Department of Chemistry, Korea University, Seoul 136-713, Korea

Wereport on the ambipolar transport and photoresponse chracteristics in solubleorganic thin film transistors (OTFTs) using composite of p-type star-shaped 4(HP3T)-benzene molecules and n-type PCBM. Heavily doped Si wafer and SiO₂ layer were used as a gate electrode and insulator, respectively. Source and drain Au electrodes, which length and width were 10 μ m and 1.9 mm, respectively, were deposited through photolithography method. On the SiO₂ layer, OTS (octadecyltrichlorosilane) was treated for increasing adhesion and crystallinity of organic active layer. Composites of 4(HP3T)-benzene and PCBM with various concentrations weredeposited as the active layer by spin coating.We measured the ambipolar transport for OTFTs in p-type and n-type operation with varying PCBM concentrations. We obseved that p-type mobility decreased from 1.65x10⁻³ to 4.20x10⁻⁵ cm²/Vs and n-type mobility increased from 4.32x10⁻⁷ to 1.27x10⁻⁵ cm²/Vs, as the PCBM concentration increased. Mecury-Xenon Lamp was used as a light source and we measured the ambipolar transport chracteristics in light condition. We obseved that p-type and n-type mobility showed similar tendency in dark condition, and the photocurrent increased about 10 times compare with that in dark condition.