

ICSM 2010

International Conference on Science and Technology of Synthetic Metals 2010

KYOTO, JAPAN JULY 4-9, 2010

ABSTRACT BOOK

Optoelectronic Characteristics of Self-Assembled Organic Copper phthalocyanine Nanowires and Rectangular Nanotubes

J. S. Jung¹, J. W. Lee¹, K. Kim¹, M. Y. Cho¹, S. G. Jo¹ and J. Joo^{1*}

Department of Physics, Korea University, Seoul 136-713 Korea,

* e-mail: jjoo@korea.ac.kr

We fabricated organic semiconducting copper phthalocyanine (CuPc) nanowires (NWs) by chemically self-assembly method with trifluoroacetic acid in chloroform solution. The mechanism of the chemical self-assembly for the CuPc NWs was studied through FT-IR spectra. After the hydrothermal process, the α phase CuPc NWs were structurally transformed to β -phase CuPc hollowed rectangular nanotubes (NTs). The optical and electrical characteristics of the β -phase crystalline CuPc rectangular NTs are compared with those of α-phase CuPc NWs, using UV/Vis absorption spectra and light/dark current-voltage characteristics. The β -phase crystalline CuPc rectangular NTs have a relatively higher photosensitive current than the self-assembled α -phase CuPc NW. From the gate field-dependent I-V characteristics for a single NW/NT transistor, improved the charge carrier mobility has been observed in the β -phase CuPc crystalline rectangular NT, compared with the self-assembled α -phase CuPc NW. These results originated from the relatively strong π - π interaction between the CuPc molecules of the β -phase CuPc crystalline rectangular NT. We fabricated organic photovoltaic devices using by the CuPc NW/NT composites with PCBM, and measured the photovoltaic characteristics.