2008년 춘계 학술대회
연구논문 초록집

2008년 4월 10일(목) - 11일(금)
대전컨벤션 센터
The formation of single polyaniline nanowires were confirmed by using field emission transistors based on single polyaniline nanowires. The performance of single polyaniline nanowire based field effect transistors was shown to be similar as the possibility of a sensor.

Fabrication of Field-Effect Transistors Based on Single Polyaniline Nanowires

In this study, we report on simple fabrication method of single polyaniline nanowires based field-effect transistors. Polyaniline nanowires were synthesized via chemical oxidation on the device having the nanochannel fabricated by e-beam lithography. The formation of single polyaniline nanowires were confirmed by using field emission scanning electron microscope and optical electron microscope. Dimensions and positions of single polyaniline nanowires were controlled with channel shapes and positions. Electrical characteristics of single polyaniline nanowire based field effect transistors were also observed. The performance of single polyaniline nanowire based field effect transistors was shown to have the possibility as a sensor.

Modified PVP gate insulator for pentacene thin-film transistors.

OTFT using bulk-free carrier confinement: Concept and experimental results.

Amorphous Organic Light-Emitting Transistors Based on Conjuncted Polyacene Derivatives.

Enhanced device performance of pentacene thin film transistor with PEDOT:PSS hole injection layer.

Conjugated Organic Thin-Film Transistors.

Anisotropic Electrical Characteristics of Organic Transistors Based on Single-Crystal Microribbon of Triisopropylsilylethynyl Pentacene.

Soluble 6,13-bis(triisopropylsilylethynyl)pentacene based organic thin film transistors.

Solution-processable organic polymeric light-emitting transistors.

Solution-processed organic light-emitting transistors (OTFTs) based on conjugated polymers.

Anisotropic Electrical Characteristics of Organic Transistors Based on Single-Crystal Microribbon of Triisopropylsilylethynyl Pentacene.

Solution-processed organic light-emitting transistors (OTFTs) based on conjugated polymers.

Amorphous Organic Light-Emitting Transistors Based on Conjuncted Polyacene Derivatives.

Enhanced device performance of pentacene thin film transistor with PEDOT:PSS hole injection layer.

Conjugated Organic Thin-Film Transistors.

Anisotropic Electrical Characteristics of Organic Transistors Based on Single-Crystal Microribbon of Triisopropylsilylethynyl Pentacene.

Solution-processed organic light-emitting transistors (OTFTs) based on conjugated polymers.