Synthesis and Characteristic of Poly (3-Hexylthiophene) (P3HT) Nanowire

S. H. Lee,¹ D. H. Park¹, D. C. Kim², H. J. Kim², R. Kim³, J. Y. Kim¹ and J. Joo¹
¹Department of Physics, Korea University, Korea
²Department of Physics, University of Incheon, Korea

The poly (3-hexylthiophene) (P3HT) nanowires were electrochemically synthesized in the nanoporous membrane. The solution used for the electrochemical polymerization was consisted of 3-hexylthiophene monomers, 1-butyli-3-methylimidazolium hexafluoro-phosphosphate (BMIIMP)² as a dopant, and acetonitrile (CH₃CN) as a solvent. After the polymerization of P3HT nanowires in the nanopores of the membrane, the P3HT nanowires were obtained by the removal of membrane by using either HF or NaOH solution. The nanowires were visualized through a scanning electron microscope (SEM) and transmission electron microscope (TEM). The diameter and length of nanowires was about 200 nm and 25~38 μm. The Raman and Fourier transform infrared (FT-IR) spectroscopy were performed to confirm the electrochemical polymerization of the P3HT nanowires. The UV-Vis and PL spectra of the dispersion of P3HT nanowires in chloroform solution showed the π~π* transition, bipolaron state, and PL peaks. The PL spectrum of the single strand of P3HT nanowire was obtained through the laser confocal microscope photoluminescence experiments.

Fabrication and Characterization of Polyvinylamine-Polyvinyl Acetate Composite Film

A. V. Gillado, H. R. E. Forio and A. K. G. Tapia
University of the Philippines-Los Banos, Philippines

Polyvinyl is a conducting polymer which is capable of exhibiting a significant electrical conductivity. However, few applications have been reported because conducting polymers base on polyvinyl exhibit poor physical and mechanical properties and are not soluble in common solvent. To overcome these drawbacks, researches have been generated to produce composites of conducting polymer and some insulating polymers. In this study, chemically synthesized Polyvinylamine (PAm) doped with perchloric acid (H₂ClO₄) was mixed with Polyvinyl Acetate (PVA) in different concentration. It was formed into films and made with uniform thickness using a calendaring machine. Mechanical properties and electrical conductivities of different concentration of PAm-PVA composite films were measured and compared. The result of the mechanical test of the prepared composite films revealed a higher plastic property due to the presence of PVA. The conductivity of the prepared composite films was found to increase with an increase of the PAm concentration. Structural characterization was also done in the composite films using the Fourier Transform Infrared Spectroscopy. It was found that the 50% preparation ratio gives the best quality of composite films in terms of its mechanical property and electrical conductivity.

The Partial Discharge Characteristics of the Ultra-High Voltage Cable Insulators According to the Tilt of Needle Electrode

T. Y. Kim¹, B. C. Ahn¹, K. W. Lee¹, Y. H. Lee¹, W. J. Kim¹, S. H. Lee² and J. W. Hong¹
¹Department of Electrical Engineering Kwangwoon University, Korea
²Department of Electronic Engineering Sungmoon University, Korea

In this paper, we investigated the effect of the cross linked polyethylene (XLPE) insulator according to the tilt of needle electrode into XLPE which is used as the insulation of the electric power cable for the ultra-high voltage. In order to investigate the effect of changing tree phenomenon according to the tilt of needle electrode on the electrical conduction mechanism, a partial discharge experiment was conducted according to the voltage at room temperature from 1 kV to 40 kV applied to the electrode. The electrical field distribution according to the tip of needle electrodes is examined using ELECTRO as a Quasi-static electrical field analysis program.

As a result of experiments, we found that the specimen with tilt 20° has highest electric field and the specimen with air void has higher partial discharge current properties than the specimen with no void. The partial discharge properties of XLPE cable using XLPE are stable at tilt 45° and the result with properties with a partial discharge experiment is similar. The effect of the inner discharge becomes large when the air void specimen is bigger than no void specimen. The specimen reduced breakdown field at 20° needle electrode.