Since 1989

KOREA-JAPAN JOINT FORUM
2007
Organic Materials
for Electronics and Photonics

September 27 – 29

KOREA UNIVERSITY
SEOUL, KOREA
CHARACTERISTICS OF ORGANIC THIN FILM TRANSISTOR USING 4-ARMED 4(HPBT)-benzene

Mi Yeon Cho¹, Su Jin Kim¹, Han Saem Kang¹, Jinsoo Joo¹,*
Kyung Hwan Kim², Min Ju Cho², Dong Hoon Choi²

¹ Hybrid Nanostructure Research Lab, Department of Physics, Korea University,
Seoul 136-701, Korea
² Department of Chemistry, Korea University, Seoul 136-701, Korea
jjoo@korea.ac.kr

Photoinduced characteristics of organic thin film transistor (OTFT) device using poly(alkylthiophene) as an active layer was reported by Narayan et al. [1] We fabricated OTFT device using a soluble star-shaped molecule, 4(HPBT)-benzene, and investigated photoinduced characteristics of the device. The core part of 4(HPBT)-benzene exhibit 2-dimensional planar geometry. Highly doped p-type Si wafer and thermally grown SiO₂ layer were used as a gate electrode and dielectric layer, respectively. Using conventional photolithography, gold (Au) source and drain electrodes were patterned with the length and width on the active region as 5 μm and 1500 μm, respectively. The active layer using π-conjugated 4(HPBT)-benzene molecules, dissolved in monochlorobenzene solvent was spin-coated at 1500~2000 rpm and then annealed at 160°C for 30 min. The schematic diagram of the OTFT device fabricated in this study is shown in Fig. 1. The OTFT device using 4(HPBT)-benzene as an active layer showed sensitive photoinduced characteristics. We observed the shift of threshold voltage and saturation current in photoinduced field-effect transistor characteristic curves. Through the measurements of the photoinduced saturation current as a function of drain voltages, we estimated photoinduced charge density of the OTFT.

![Figure 1. Schematic diagram of 4(HPBT)-benzene-based OTFT device.](image)

References