Terahertz and Optical Plasmonics

TOPS 2007

Nov. 8-9, 2007

Centennial Memorial SAMSUNG Hall, Korea University

Organized by
Korea University and Seoul National University

Sponsored by
* Star Faculty Project : 'Surface plasmon plus'
* BK21 : Korea Univ & Seoul National Univ.
* NRL
* Center for Integrated Nano Systems
Enhanced Light Emission of Organic Semiconductors
Using Surface Plasmon Resonance

Jinsoo Joo1, Dong Hyuk Park2, Hyun Seung Kim1, Yong Baek Lee1, Mi-Yun Jeong1, Hyun-Jun Kim1,
Dae-Chul Kim3, Jeongyong Kim3, Won-Jun Choi1, and Q.-Han Park1

1Department of Physics and Hybrid Nanostructure Lab, Korea University, Seoul 136-701, Korea
2Department of Physics, University of Incheon, University of Incheon, 402-749, Korea
*joo@korea.ac.kr

Abstract: Significant enhancement of photoluminescence (PL) for a single strand of light emitting polymers; polythiophene (PTh) or poly (3-methylthiophene) (P3MT) nanotubes, coated with nanoscale copper (Cu), nickel (Ni), or cobalt (Co) metal, was observed and analyzed in terms of charge and/or energy transfer effect in surface plasmon resonance.

The coaxial hybrid double layered nanotubes (HDLNTs) consisting of light emitting polymers; polythiophene (PTh) or poly (3-methylthiophene) (P3MT) nanotubes, enveloped by nanoscale copper (Cu), nickel (Ni), or cobalt (Co) metal, were electrochemically synthesized using an Al2O3 nanoporous template. The metals with nanoscale thickness (about 10 nm) were sequentially electrochemically deposited onto the polymer nanotubes. The hybrid nanotubes were visualized and confirmed through scanning electron microscope (SEM), transmission electron microscope (TEM), high-resolution (HR)-TEM, and elemental analysis, as shown in Fig. 1.

Fig. 1 (a) SEM, (b) TEM, and (c) HR-TEM images of the PTh/metals HDLNTs (from Ref. [1]).
The enhanced PL efficiency in nanoscale was determined through laser confocal microscope (LCM) PL measurements with a high spatial resolution. The LCM PL intensity of the single strand of the PTh/metal HDLNTs increased up to about 70 times depending on the kinds of nanoscale metals, as shown in Fig. 2 [1]. We also found that the nanoscale LCM PL intensities of doped P3MT nanotube based-HDLNTs remarkably increased as the doping levels of the P3MT nanotubes increased. We analyze that the significant enhancement of LCM PL of the PTh and P3MT based-HDLNTs might originate both from energy transfer and charge transfer in a surface plasmon resonance (SPR) coupling [2]. From ultraviolet and visible absorption spectra and calculations of local electric field enhancement for the hybrid nanostructures, the SP effects contributed to the enhancement of PL. The SP enhanced – PL of organic polymer and inorganic metal hybrid nanotubes could be significantly applied to organic based displays and nanoscale optoelectronics.

Fig. 2 LCM PL (a) images and (b) spectra of the PTh/metals HDLNTs (from Ref. [1]).
