Fifth International Conference on Molecular Electronics and Bioelectronics (M&BE5)

ABSTRACTS

March 15-18, 2009, at Miyazaki International Conference Hall
Phoenix Seagaia Resort, Miyazaki, Japan

- Organic Devices, Molecular Electronics
- Fabrication Technique and Characterization
- Liquid Crystals, Polymers, and Other Soft-Materials
- Biomolecular Electronics and Bioanalysis
- Nanocarbon and Nanotechnology

Sponsored by The Japan Society of Applied Physics
Photo-controlled Organic Thin Film Transistors

Using Soluble π-Conjugated Molecules

Mi Yeon Cho¹, Su Jin Kim¹, Yoon Deok Han¹, Dong Hyuk Park¹, Se Hee Park¹
Kyung Hwan Kim², Dong Hoon Choi², and Jinsoo Joo¹,*

¹Department of Physics and Hybrid Nanostructure Research Lab, Korea University, Seoul 136-701, Korea
²Department of Chemistry, Korea University, Seoul 136-701, Korea
E-mail: salomie@korea.ac.kr, jjo@korea.ac.kr

We fabricated photo-sensitive organic thin film transistors using soluble π-conjugated molecules, such as star-shaped 4(HPBT)-benzene and 4(HP3T)-benzene molecules having a relatively high quantum yield and TIPS-pentacene having a high mobility. The 4(HPBT)-benzene based organic photo-transistors (OPTs) exhibited high photo-sensitivity (2500 ~ 4300 A/W) even with low optical powers (6.8 ~ 30 µW/cm²) at zero gate bias. The measured photo-sensitivity of the devices was much higher than that of inorganic single crystal Si based photo-transistors, as well as that of other OPTs reported earlier. With the highly photo-sensitive characteristics of the 4(HPBT)-benzene based OPTs, we observed the high ratio of on and off current switching as $\sim 4 \times 10^4$ with low optical power and low gate bias [1]. Photo-induced charges affect to the trapped electron density of gate-insulator-semiconductor interface. Using these photo-enhanced charge trapping phenomena at the interface, we could control the threshold voltage and lead to a reproducible memory operation for soluble 4(HPBT)-benzene, 4(HP3T)-benzene, and TIPS-pentacene based OPTs. For the TIPS-pentacene based OPTs, the on-state and off-state current ratios of the memory operation with incident light were ~ 55 times higher than those with dark conditions. We also present the e-beam treated effect using pentacene based devices.