Fifth International Conference on Molecular Electronics and Bioelectronics (M&BE5)

ABSTRACTS

March 15-18, 2009, at Miyazaki International Conference Hall
Phoenix Seagaia Resort, Miyazaki, Japan

- Organic Devices, Molecular Electronics
- Fabrication Technique and Characterization
- Liquid Crystals, Polymers, and Other Soft-Materials
- Biomolecular Electronics and Bioanalysis
- Nanocarbon and Nanotechnology

Sponsored by The Japan Society of Applied Physics
Electron-beam irradiation on polymer nanomaterials

Young Ki Hong¹, Dong Hyuk Park¹, Kihyun Kim¹, Sang Won Bae¹, Se Hee Park¹, Dae-Chul Kim², Huguen Song², Jeongyong Kim², Jinsoo Joo*¹

¹ Department of Physics, Korea University, Seoul 136-713, Korea
² Department of Physics, University of Incheon, Incheon 402-749, Korea
E-mail: imhyke@korea.ac.kr, jjoo@korea.ac.kr

We report on the effects of electron (E)-beam irradiation on the optical and electrical properties of π-conjugated polymer nanomaterials and their application to nano-devices. π-Conjugated polymer nanomaterials such as light emitting poly (3-methylthiopnehe) (P3MT) nanotubes and conducting polypyrrole (PPy) nanowires were synthesized through the electrochemical polymerization method. Unfocused E-beam generated from linear electron accelerator was irradiated on the polymer nanomaterials. The energies and the dosages of the unfocused E-beam irradiation in an atmospheric environment, varied from 300 keV to 2 MeV and from 1.6×10¹³ to 8.0×10¹⁶ electrons/cm², respectively. Focused E-beam generated from E-beam lithography instrument was also irradiated on the intended area of single strand of PPy nanowires. The dosages of the focused E-beam irradiation under relatively high vacuum condition (≤ 10⁻⁵ torr) varied from 1.0×10¹⁵ to 1.0×10¹⁹ electrons/cm². To discern conformational changes due to the E-beam irradiation, Raman spectra of the pristine and E-beam irradiated polymer nanomaterials were compared in the conditions of E-beam irradiation. From ultraviolet-visible absorption spectra, we observed that the π-π* transition peak and the doping induced polaron and bipolaron peaks of the polymer nanomaterials varied with the energy and/or dosage of E-beam irradiation. From the laser confocal microscope (LCM) photoluminescence (PL) images and spectra for the single strands of P3MT nanotubes, we observed the significant red-shift of LCM PL peaks and enhancements in the LCM PL intensity of P3MT nanotubes through relatively high energy E-beam irradiation [1]. Comparing of the current-voltage (I-V) characteristics between the pristine and E-beam irradiated PPy nanowires, the resistance of PPy nanowires gradually increased as the energy and/or dosage of E-beam increased [2]. We suggest that the variation of optical and electrical properties of π-conjugated polymer nanomaterials might have originated from conformational change and dedoping effect, produced by the E-beam irradiation.