CELEBRATING 20 YEARS OF MOLECULAR ELECTRONICS RESEARCH
ME&D 1990-2009

- Date: 2009. 5. 22 (Fri) ~ 2009. 5.23 (Sat)
- Place: St. Ignatius Hall, Sogang University
- Website: www.me-d.org

Organized by Center for Bioelectronic Devices of Sogang University
Hosted by the Korean Biochip Society

SPONSORS
- BK21 Center for BT-IT Hybrid Nanomaterials, Hannam Univ.
- Molecular Nanoelectronics, NRL, GIST
- BK21 FOMC, Dept. of Chemistry, Sogang Univ.
- National Center for Nanomaterials Technology (NCNT), POSTECH
- Korea Research Institute of Chemical Technology
- INST, Hanyang Univ.
- Human Resource Training Project for Strategic Technology, Sogang Univ.
- Interdisciplinary Program of Biotechnology, Sogang University
Structure and optical characteristics of MWCNTs coated with light-emitting poly (3-hexylthiophene)

J. W. Shin¹, K. Kim¹, D. H. Park¹, D. G. Jang², C. J. Lee² and J. Joo¹*

¹Department of Physics and Hybrid nanostructure lab., Korea University,
²Department of Electrical engineering and Nanotube and Nanodevice lab., Korea University
5-1 Anam-dong, Seongbuk-gu, Seoul 136-713, South Korea
*E-mail : kukisj@korea.ac.kr.

We fabricated double wall structure of hybrid nanotube of with light-emitting poly (3-hexylthiophene) (P3HT) coated onto multi-walled carbon nanotubes (MWCNTs). The MWCNTs were grown on n-doped Si substrate by thermal chemical vapor deposition. Light-emitting P3HT materials were directly deposited onto MWCNT surface by using electrochemical polymerization method [1]. To discern structural characteristics of MWCNT, P3HT, and hybrid MWCNT/P3HT nanotubes, scanning electron microscope (SEM) images, ultraviolet/visible (UV/vis) absorption, and Raman (λex = 514 nm) spectra (see Fig. 1) were measured and analyzed. For structural characteristics of a single strand nanotube, laser confocal microscope (LCM) Raman (λex = 488 nm) spectra and transmission electron microscope (TEM) images were measured. The diameter of hybrid nanotubes increased from ~ 40 nm to ~ 100 nm, after coating of P3HT. Both typical Raman modes of MWCNT and P3HT materials were identified. With comparing solution photoluminescence (PL) and LCM PL spectra, luminescence characteristics of MWCNT/P3HT nanotubes were investigated.

References
Figure 1. Raman spectra of MWCNT, P3HT, and hybrid MWCNT/P3HT nanotubes.